奇怪国家的数学家

HD中字

主演:崔岷植,金东辉,朴解浚,朴炳垠,卢宗贤

类型:电影地区:韩国语言:韩语年份:2022

 量子

缺集或无法播,更换其他线路.

 无尽

缺集或无法播,更换其他线路.

 优质

缺集或无法播,更换其他线路.

 红牛

缺集或无法播,更换其他线路.

 非凡

缺集或无法播,更换其他线路.

 剧照

奇怪国家的数学家 剧照 NO.1奇怪国家的数学家 剧照 NO.2奇怪国家的数学家 剧照 NO.3奇怪国家的数学家 剧照 NO.4奇怪国家的数学家 剧照 NO.5奇怪国家的数学家 剧照 NO.6奇怪国家的数学家 剧照 NO.13奇怪国家的数学家 剧照 NO.14奇怪国家的数学家 剧照 NO.15奇怪国家的数学家 剧照 NO.16奇怪国家的数学家 剧照 NO.17奇怪国家的数学家 剧照 NO.18奇怪国家的数学家 剧照 NO.19奇怪国家的数学家 剧照 NO.20

 长篇影评

 1 ) 学数学首先要知道的

这部电影,其实感觉本意并不是要讲数学的,这部韩国电影一开始就冲着强烈的民族主义思想,冲着挤兑朝鲜出发的。电影骨子里想说的是“大韩民族”有着聪明的数学家,这位数学家为了追求数学研究,脱北了。所以,标题也就定位了“奇怪国家”。当然了,电影也批判了韩国的数学届,同样非常功利,因为这位数学家,证明了黎曼假设(因为实际上至今仍没有被证明,所以电影中就提出来后人还要检验他的证明)。而“黎曼假设与密码学有关,不仅是军事加密,电子商务也与之相关,网上银行和购物,它们将被彻底破解”,所以,他们要在“丢了”他之后(李丢下了重病的妻子,带着儿子脱北,希望得到好的研究环境,希望孩子有自由的未来。但不意儿子无法适应,坚决要游回朝鲜,结果被韩国士兵击毙。于是李选择“消失”,当了一个大学的保安),“抓住”他(让他回归政府的掌握,为军方服务)。有这样“大矛盾”可能也是出于让故事更加有层次,但是也显得俗套了。

故事的“小矛盾”,也是具体到人物关系和矛盾冲突,是李帮助一个“父亲去世”的数学困难生,因为感觉他就像自己的儿子一样,而且也同情这个孩子的遭遇(靠政府福利读书,结果老师总是劝说他转学,大意是害怕他拖累平均分或者自己的业绩)。所以李靠着这个困难生,找回来对数学的热爱,继续回归数学工作。而困难生不仅提升了数学成绩,也靠实践证明自己所可以读好书,不用转学的。

所以,回归我感兴趣的,还是数学。可惜,片中最直接逼近数学的一段,就是通过李介绍“欧拉公式”之美,试图让观众理解数学之美的。可惜,这个桥段,之前日本的《博士的爱情方程式》已经用过了。

剩下的就是另外两个片段了。当然这两个片段还是值得学习和领悟的。

其一,就是“数学必须先理解问题,再谈解决问题”。

李给困难生出了一道数学题:这是一个由点A B C组成的三角形,A的角度为90度,是等腰直角三角形,高度为6 底部为10,求面积?

这样一个容易的题目,困难生自然就用“底乘以高度,除以2”得出“是30”了。相信我们也会这样。不过,李在三角形外面画了一个圆。自然就让我们看出了问题:仔细看,高度是半径,所以应该是5,而不是6。

困难生当然要辩驳了:你问我的问题不对,在韩国,我们称之为问题错误,如果考试中突然出现,他们会给你及格。

但是李问:那么这个三角形是否存在?

困难生:它不可能存在……谁知道你会故意问我一个不正确的问题。

李说:那是因为你对解决问题视而不见,找到答案很重要,但知道问题是什么更重要。你不能从错误的问题中得到正确的答案!因此,这都是关于找到解决方案的过程,这就是数学,懂了吗?

这段话,看起来好像有点坑人,但其实不是。爱因斯坦也说过:“如果你所讨论的命题不合逻辑,那么,不管你运用了多么合平规则的逻辑,你还是找不到正确的答案!”弄清楚问题,这更重要。

其二,就是“研究数学,并能够取的成功的人与其说凭智慧,不如说靠勇气”。这点的确是震撼人心的。因为我们都觉得数学难,然后不愿意接触它,被它折磨得很惨。但是李指出了一个我们都忽略的问题,还是大问题!

李让困难生解决一个数学问题,而困难生拒绝继续完成计算,因为说白了,就是一个简单而枯燥的计算过程(把这些加起来就行了),所以他不愿意像傻子一样手动把它们加起来。于是李给他看了一本厚厚的书,里面是在手动开2的平方根。而且是“手工计算了2的平方根的38位小数”。

困难生觉得这样很变态(相信目前的学生没有一个不是这样的)。不过,李揭开谜底,这个变态不是别人,正是格奥尔格· 弗雷德里希· 波恩哈德·黎曼(G. F. Bernhard Riemann)。就是提出黎曼假设的那个著名数学家。李说道:真正的问题是为什么这位世界著名数学家做了一个无用的计算,比如2的平方根。的确,变得亲密!用2的平方根,记住公式是不行的,你必须下来和它交朋友,为了更好理解它,然后爱上它……不要相信任何未经证实的事情,数学家就是这么做的。看我,你最需要什么才能学好数学?(困难生答:可能是聪明吧)聪明人先放弃,我希望你不是说“努力”,依靠努力的人下一步就会放弃。(困难生问:那是什么?)勇气!“来吧!我能做到!”诸如此类的事。当你无法解决问题时,与其生气或放弃,你对自己说:“这真的很难,我明天再试一次。”这就是数学勇气,性格沉稳坚定的人,最终获胜!

虽然,电影还是不敢怎么样去“直面数学”,但是至少上面两点,是电影人对于理解数学和表达数学所呈现出来的诚意。

 2 ) 谁又能拒绝爽文男主套路呢

导演并不是很知名,演员倒是很厉害,剧作也不是很高深,主题也比较简单,不外乎对于学术的态度以及对现行制度的讽刺。但是这个剧作结构,真是屡试不爽。

相信不少看过国内玄幻修真系列小说的观众,会对此深有体会。家境清寒的男主,开始的时候经常受人欺负,一个偶然的机会,得到高人指点,最终修为一跃而上,并在故事发展到高潮的部分,高人的真实身份也浮出水面,甚至为了男主的前途,不惜亲自出面,而男主的情感线也是很顺畅,俘获佳人芳心。

而导演是想通过一部现实青春成长题材类电影,反应数学家对学术的执着以及通过一件事来完成数学家心灵上的救赎(男主丧父,数学家丧子,很巧合地形成了父与子之间的互补。张艺谋的电影《一秒钟》里,张译和刘闺女也是父女的互补。)。

镜头剪辑和叙事上都是相对平缓的,甚至,有些几乎就是写意的画面。镜头中流露出的朴实,正应对了数学这个学科比较枯燥或者没有那么多奇迹的可能。

导演似乎有意在弱化男主在数学上的故事性,而是把他的做人的一面展示的更为完整,替同学扛下处分,却不收同学的回报;大概是父亲去世的原因,让他早早地承担起家里的一些家务;为了帮助数学家打印论文,被老师误会泄题。

然而,影片的真正主角,是脱北者——数学家,他验证了黎曼猜想,一举成名,却为了帮助男主完成人生的一次成长洗礼,留在了韩国。

整个故事的主要剧情,如果用3分钟看电影的方式也可以讲得很清楚,那么剩下的时间,导演在拍什么呢?人。形形色色的人,都很真实,甚至就是身边的他和她。导演把整个故事设定在现实的社会之下,不仅仅是对当下学术氛围的不满,更是对社会未来的担忧,如果都是教育模式刻出来的标准答案,那谁还有机会追求真理呢?

套路虽简单,却不失为一个好套路。

 3 ) 韩国数学家许埈珥刚刚获得2022年“菲尔兹奖”

2022年7月5日,4位年轻数学家获得了2022年“菲尔兹奖”。他们分别是:

  36岁的瑞士日内瓦大学/法国高等科学研究所教授Hugo Duminil-Copin,“表彰解决了统计物理中/相变的/概率理论里(尤其是在三维和四维情形下)若干长期没有解决的问题”。

  39岁的美国普林斯顿高等研究院June Huh(许埈珥),“表彰其将霍奇理论的思想引入组合学,证明了几何格的Dowling–Wilson猜想,证明了拟阵的Heron–Rota–Welsh猜想,发展了洛伦兹多项式,以及证明了强梅森猜想。”

  35岁的英国牛津大学教授James Maynard,“表彰其对解析数论的贡献,在理解素数的结构和丢番图逼近方面取得了重大进展。”

  37岁的瑞士洛桑联邦理工学院教授Maryna Viazovska,“表彰其证明E8格在8维中提供了相同球体的最密集堆积法,并对傅立叶分析中的相关极值问题和插值问题作出了进一步的贡献。”

  Maryna Viazovska出生于乌克兰,是第二位获得菲尔兹奖的女性数学家。

  2014年,37岁的伊朗数学家玛丽亚姆·米尔扎哈尼(Maryam Mirzakhani)获得菲尔兹奖,成为该奖项历史上的首位女性得主。2017年,米尔扎哈尼因患乳腺癌在美国去世,年仅40岁。

  菲尔兹奖每四年在国际数学家大会上颁发一次,以表彰当下以及未来有可能取得杰出数学成就的40岁以下的数学家。

下文为介绍许埈珥的求学及学术经历的一篇文章,选摘自《素数的阴谋》,撰文凯文·哈特尼特,中信出版社出版。

  2017年一个温暖的春日清晨,许埈珥(June Huh)步行穿过普林斯顿大学的校园。按计划,他将前往麦克唐奈楼上课,但他不太确定怎么去那里。许埈珥是普林斯顿高等研究院的一员,这一远离俗世的研究院毗邻普林斯顿大学校园。作为高等研究院的成员,许埈珥并没有教课的义务,但他自愿教一门叫作 “交换代数” 的本科高级数学课程。被问及为什么要这样做时,他说:“当你教课时,你多少会做一些有用的事。但做研究时,大多数时候你都在做无用功。”

  我们在上课前几分钟到达了教室。教室里零零散散地坐着9个学生,其中一个学生趴在桌上睡觉。许埈珥在教室前角找了个位置,从背包里拿出几页皱巴巴的笔记。然后他单刀直入,从上周结束的地方开始讲起。在接下来80分钟里,他带领学生们学习了德国数学家大卫·希尔伯特对一个定理的证明,该定理是20世纪数学领域最重要的突破之一。

  只有少数几所大学在本科阶段讲授交换代数,但普林斯顿会定期开设这门课程。普林斯顿每年招收世界上少数几个最有前途的年轻数学人才。许埈珥说,即使按照这个标准,那天早上他班里的学生也称得上天赋异禀。其中之一,就是那天早上坐在教室前排的那个学生,是唯一一个连续五次在国际数学奥林匹克竞赛中获得金牌的人。

  许埈珥在数学生涯伊始并没有得到太多赞誉。小学时考试成绩的不理想使他确信自己并不擅长数学。十几岁时,他的梦想是成为一名诗人。许埈珥的主修专业并不是数学,当他最终申请研究生时,除一所大学外,其他大学都拒绝了他。

  9年后,34岁的许埈珥已经站在了数学世界的顶峰。他最著名的工作,是与数学家埃里克·卡茨(Eric Katz)和卡里姆·阿迪普拉西托(Karim Adiprasito)一起,证明了罗塔猜想(Rota’s conjecture)这一长期存在的问题。

  比证明本身更值得关注的是许埈珥及其合作者实现它的方式——他们找到了一种方法,可以将一个数学领域中的想法重新解释到另一个它们似乎并不属于的数学领域。2017年春天,高等研究院给许埈珥提供了一个长期的研究员职位。在他之前,这一职位只授予过三位年轻的数学家,其中两人,即弗拉基米尔·沃埃沃德斯基(Vladimir Voevodsky)和吴宝珠(Ng? B?o Chau)后来获得了数学界的最高荣誉——菲尔兹奖。

  许埈珥在相当晚的时候才开始学习数学,并在之后取得如今的成就,就好比他18岁拿起网球拍,20岁就赢得温布尔登网球公开赛一样,属于几乎不可能发生的事。这是一条从天而降的职业途径,在今天的数学界简直根本不会发生——即使是为了有个地方待着,以让自己能做出新的发现,通常也需要经历数年的专业训练。然而,如果认为许埈珥的突破是他克服了自己非科班出身的劣势而取得的,那就大错特错了。在许多方面,他的这些突破是其独特经历的产物,是他在大学最后一年偶遇一位传奇数学家的直接结果。这位传奇数学家在某种程度上看出了许埈珥身上连他自己都未曾察觉的天赋。

  1 意外的学徒1983年,许埈珥在美国加州出生,当时他父母正在那儿读研究生。两岁时,他们一家人回到了韩国首尔。在那里,许埈珥的父亲教统计学,他母亲成为冷战开始以来韩国最早的俄罗斯文学教授之一。

  许埈珥说,在一次糟糕的小学数学考试之后,他对这门学科采取了一种抵抗的态度:他认为自己并不擅长数学,所以决定将其视为 “把一个逻辑上必要的陈述叠加在另一个陈述上” 的无趣追求。十几岁时,他转而喜欢上了诗歌,认为诗歌是一种真正的创造性表达。“我知道我很聪明,但我无法用成绩证明这一点,所以就开始写诗。” 许埈珥说。

  许埈珥写了很多诗和一些中篇小说,大部分是关于他自己十几岁时的经历,但没有一篇得以发表。2002年,许埈珥考入首尔国立大学,当时他就认定自己无法以诗人的身份谋生,于是决定改行当一名科学记者。许埈珥在大学期间主修天文和物理,这也许是无意识地承认了自己潜在的分析能力。

  大学最后一年时,许埈珥24岁。那一年,著名的日本数学家广中平祐以客座教授的身份来到首尔国立大学。广中平祐当时已经70多岁了,在日本和韩国家喻户晓。他于1970年获得菲尔兹奖,后来写了一本十分畅销的回忆录《创造之门》(The Joy of Learning)。那一代韩国和日本的父母都会把这本书送给自己的孩子,希望自己的下一代能成为伟大的数学家。在首尔国立大学,广中平祐开设了为期一年的代数几何(一个非常广泛的数学领域)讲座课程。许埈珥也选了这门课,他觉得广中平祐有可能成为他记者生涯中的第一个采访对象。

  一开始,广中平祐的课上有100多个学生,其中包括不少数学专业的学生,但几周以后,来上课的人就屈指可数了。许埈珥猜测,其他学生退课可能是觉得广中平祐的课很难理解,而他之所以能坚持下来是因为自己并不指望能从这门课中学到什么。

  许埈珥说:“数学专业的学生退课是因为他们什么都听不懂。当然了,我也什么都听不懂,但非数学专业的学生对 ‘理解某件事’ 有不同的标准。我确实理解了他在课堂上展示的一些简单的例子,这对我来说已经很不错了。”

  下课后,许埈珥会特意找广中平祐聊天,两人很快就开始共进午餐。广中平祐还记得许埈珥的积极主动。“我并不会拒绝学生,但我也不会主动找学生,他只是正好来找我。” 广中平祐回忆道。

  许埈珥试图利用这些午餐时间询问广中平祐一些个人问题,但谈话最后总会回到数学上。每到此时,许埈珥都会尽量不暴露自己的无知。“不知怎么的,我很擅长假装听懂他在说什么。” 他说。事实上,广中平祐从未意识到自己未来的学生缺乏正规训练。“那不是我记忆深刻的事。他给我留下了深刻印象。” 广中平祐说。

  随着午餐谈话的继续,两人的关系越来越好。许埈珥毕业后,广中平祐在首尔国立大学又多待了两年。在那期间,许埈珥开始在广中平祐的指导下攻读数学硕士学位。他们几乎总在一起。广中平祐会偶尔回日本,许埈珥就拎着广中平祐的行李穿过机场,跟他一起回去,甚至和广中平祐夫妇一起住在他们位于京都的公寓。

  “我问他想不想住酒店,他说不喜欢。他就是这么说的。所以他就住在我公寓的一个角落。” 广中平祐说。

  在京都和首尔,广中平祐和许埈珥会一起出去吃饭或者长时间地散步,期间广中平祐会停下来给路边的花拍照片。他们成了朋友。“我喜欢他,他也喜欢我,所以我们聊了一些非数学的东西。” 广中平祐说。

  与此同时,广中平祐继续指导许埈珥,他从一些许埈珥能理解的具体例子开始,而不是直接向许埈珥介绍一些他可能无法掌握的一般理论。特别地,广中平祐教了许埈珥一些关于奇点理论的精微玄妙之处,广中平祐就是在这个领域取得了他最著名的结果。几十年来,广中平祐也一直在努力寻找特征p的奇点消解的证明,这是一个重要的悬而未决的问题。“显然,他想让我继续这项工作。” 许埈珥说。

  2009年,在广中平祐的敦促下,许埈珥申请了十几所美国的研究生院。他的资历很浅:不是数学专业出身,上过的研究生水平的课程很少,并且在已上的课上也表现平平。许埈珥的入学申请很大程度上取决于广中平祐的推荐,但大多数学校的招生委员会均对此不为所动。除了伊利诺伊大学厄巴纳–香槟分校,其他学校都拒绝了他,于是他在2009年秋季进入了这所大学就读。

  2 图中的裂缝在伊利诺伊州,许埈珥开始了一项最终帮助他证明了罗塔猜想的工作。罗塔猜想是意大利数学家吉安–卡洛·罗塔(Gian-Carlo Rota)在1971年提出的,它研究的是组合对象——组合对象是一些类似于万能工匠玩具的构造,比如图(graph)这种点和线段粘在一起的 “组合”。

  考虑一个简单的图:三角形   数学家感兴趣的问题是:给定一些颜色,一共有多少种不同的方法为三角形的顶点着色,可以令任意一条边两端的两个顶点不能有相同的颜色。假设你有q种颜色。你的选择如下:   第一个顶点的颜色有q种选择:因为开始时你可以使用任何颜色。

  相邻顶点的颜色有q-1种选择:因为你可以使用除第一个顶点的颜色以外的任何颜色。

  第三个顶点的颜色有q-2种选择,因为你可以使用除前两个顶点的颜色以外的任何颜色。

  着色方法的总数将是所有选择的乘积,在这个例子中就是 q×(q–1)×(q-2)=q3–3q2+q。

  上述方程被称为这个图的色多项式,它有一些有趣的性质。取其每一项的系数:1,-3和2。该序列的绝对值一一1,3, 2——有两个特殊的性质。第一,它是 “单峰的”,即它只有一个峰值,在该峰值之前,序列只会上升;在该峰值之后,序列只会下降。

  第二,它是 “对数凹” 的,即该序列中任意连续三个数都满足外面两个数的乘积小于中间数的平方。序列(1,3, 5)满足这个要求(),但序列(2, 3, 5 )不满足这个要求()。

  你可以想象无穷多的图——这些图有更多的顶点和边,这些顶点和边可以通过任何方式相连。每个图都有唯一的色多项式。在数学家研究过的每一个图中,其色多项式的系数总是单峰的和对数凹的。所谓的里德猜想(Read’s conjecture)即断言上述事实总是成立。许埈珥将开始证明这一猜想。

  从某种意义上来说,里德猜想是非常反直觉的。要理解其中的原因,多了解一些如何将图分解成子图并重新组合的过程将很有帮助。考虑一个稍微复杂一点的图一一图3.4中的矩形。

  矩形的色多项式比三角形的色多项式更难计算,但任何图都可以分解成子图,相比之下子图更容易处理。子图是通过从原图中删掉一条(或多条)边(如图3.5所示),或将两个顶点收缩成一个顶点(如图3.6所示)而得到的图。

  矩形的色多项式等于删掉一条边的矩形的色多项式减去三角形的色多项式。当你注意到与矩形本身相比,删掉一条边的矩形的着色方案应该更多时,这一点就很直观了:在删掉一条边的矩形中,上面没有被一条边相连的两个点会给你更多的着色自由度。(例如,你可以给它们着上相同的颜色,但当它们相连时,你就不能这么做。)那它能给你多大的自由度呢?恰好是三角形的着色数。

  任何图的色多项式都可以通过子图的色多项式来定义,并且所有这些色多项式的系数总是对数凹的。

  然而,一般而言,当你对两个对数凹序列进行加减时,得到的序列并不是对数凹的。因此,在组合色多项式的过程中,你会期望对数凹性消失。但它并没有消失,这说明在此过程中还有别的事情在发生。“这就是人们好奇这种对数凹现象的原因。” 许埈珥解释道。

  3 寻找隐藏的结构许埈珥刚到伊利诺伊时并不知道里德猜想。大多数一年级的研究生在课堂上花费的时间要多于在自己研究上的时间,但在结束了跟随广中平祐的三年学徒生活之后,许埈珥有了自己要研究的想法。

  在到美国中西部后度过的第一个冬季,许埈珥发展了将奇点理论(这是他跟广中平祐学习的重点)应用于图的技术。在此过程中,许埈珥发现当他从图中构造出一个奇点时,他就可以用奇点理论来证明原来这个图的很多性质一一例如,解释为什么一个图的色多项式的系数会遵循对数凹模式。

  这一点对许埈珥来说非常有趣,于是他去查阅图论的文献,想看看是否有其他人解释过他看到的这些对数凹模式。许埈珥发现,对图论学家来说,这些模式仍然是完全神秘的。

  许埈珥说:“我发现自己观察到的这种模式实际上是图论中一个著名的猜想,叫里德猜想。从某种意义上说,我在不知道问题的情况下解决了问题。”

  许埈珥无意中对里德猜想的证明,以及他将奇点理论与图相结合的方式,都可以看作其朴素数学方法的产物。他了解奇点理论的方式主要是自学和跟随广中平祐的非正式学习。观察过他在过去几年崛起过程的人认为,正是这种经历让他没那么受制于关于哪些数学方法值得尝试的传统观点。“如果你把数学看作一块分为几个国家的大陆的话,我认为许埈珥的情况就相当于,没有人真的告诉他存在这些边界。他绝对不受任何界限的约束。” 高等研究院主任罗贝特-戴克赫拉夫说。

  许埈珥把自己对里德猜想的证明发布到网上后不久,密歇根大学邀请他去做报告,专门介绍这一结果。2010年12月3日,许埈珥在一个坐满了数学家的房间里开始了自己的报告,而这些数学家正是一年前拒绝了他的研究生申请的那批人。至此,许埈珥的天赋在其他数学家眼中已是显而易见。杰西?卡斯(Jesse Kass)当时是密歇根大学的数学博士后研究员。卡斯回忆说,就在许埈珥到访之前,一名资深教员鼓励他去听许埈珥的报告,因为这样 “30年后你就可以告诉你的孙子,你在许埈珥成名之前就听过他的报告了”。卡斯现在是南卡罗来纳大学的教授。

  许埈珥的报告没有让大家失望。

  “从某种程度上说,这个报告非常优美和清晰;它一下子就切中了要点。对于刚开始读研究生的人来说,能做一个如此清楚的报告的并不多见。” 密歇根大学数学家米尔洽?穆斯塔策(Mircea Musta??)说。

  在许埈珥的报告之后,密歇根大学的教授们邀请他转校,于是许埈珥在2011年去了密歇根。到那时,他已经知道里德猜想是一个更宏大更重要的问题——罗塔猜想的特例。

  罗塔猜想与里德猜想非常相似,但它的研究对象不再是图,而是一类比图更抽象的,被称为 “拟阵”(matroid,图可以看作是一类特别具体的拟阵)的组合对象,以及由拟阵产生的另一种称为 “特征多项式” 的方程。但两者的基本点是相同的:罗塔猜想预测,任何拟阵的特征多项式的系数总是对数凹的。

  罗塔猜想的陈述很简单,证据也很多,但要证明它,也就是解释为什么会出现对数凹性,却极其困难。拟阵本身没有任何东西能表明,为什么对子拟阵的特征多项式进行加减时,这些对数凹性会一致地保持(就像当你对图的色多项式进行加减时,没有明显的理由表明对数凹性会保持一样)。每当观察到一种没有明显原因的模式时,你会自然地深入地表以下——去寻找长成这棵树的根。当许埈珥及其合作者开始攻克罗塔猜想时,他们就是这么做的。

  许埈珥说:“在具体的例子中很容易观察到对数凹性。你只需要计算感兴趣的序列,就可以看到对数凹性就在那里。但由于某些原因,解释为什么会出现这一现象是很困难的。”

  起初,许埈珥试图推广他在证明里德猜想时使用的奇点理论的技术,但他很快发现,这些技术在更抽象的拟阵领域并不奏效。

  这次失败,让许埈珥开始寻找隐藏在拟阵表面之下的、能够解释其数学行为的其他结构。

  4 跨越边界一些人类理解上的重大飞跃,发生在有人将一个领域的成熟理论推广到另一个领域中看似不相关的现象的时候。以万有引力为例。人们一直明白从高处释放物体,物体就会掉到地面;当牛顿意识到同样的动力学定律可以解释行星的运动时,我们头顶的天空就变得更加清晰了。

  在数学中,类似的思想迁移经常发生。1994年,颇有影响力的数学家威廉?瑟斯顿在他那篇被广泛引用的论文《论数学的证明与进步》(On Proof and Progress in Mathematics)中解释说,“导数” 这个概念有几十种不同的理解方式。[2] 一种是你在微积分中学到的一一导数是一个函数中无穷小变化的度量。但导数也会以其他形式出现:与函数图像相切的直线的斜率,或在特定时刻由函数给出的瞬时速度。瑟斯顿写道:“这是一系列思考或想象导数的不同方式,而非一系列不同的逻辑定义。”

  许埈珥对罗塔猜想的研究,涉及对另一个古老数学领域一一 “霍奇理论” 的重新认识。霍奇理论是20世纪30年代由苏格兰数学家威廉?霍奇(William Hodge)发展起来的。称其为 “理论” 只表明它是对某一特定事物的研究,就像你可以说 “直角三角形理论” 是对直角三角形的研究一样。在霍奇理论中,我们感兴趣的对象是 “光滑射影代数簇的上同调环”。

  从表面上看,霍奇理论与图或拟阵之间的关系似乎远到不能再远了。霍奇理论中的上同调环是由包含无穷概念的光滑函数产生的。相比之下,像图和拟阵这样的组合对象则是纯粹离散的一一它们是点和线的组合。要问霍奇理论在拟阵的背景下有什么意义,有点儿像问如何求一个球体的平方根,这个问题似乎就没有任何意义。

  然而,我们有充分的理由问这一问题。霍奇理论提出之后的60多年里,数学家们已经在远离最初代数背景的情形下发现了许多霍奇型结构的例子。这就好像一度被认为是直角三角形唯一来源的毕达哥拉斯关系,后来被证明也可以用来描述素数的分布。

  “有一种感觉是,这些结构只要存在,就是基本的。它们可以解释关于数学结构的一些事实,而这些事实很难用其他任何方法解释。” 许埈珥说。

  在这些新近发现了霍奇型结构的背景中,有一部分是与组合相关的,这促使许埈珥开始思考:这些来自霍奇理论的关系是否能用来解释这些对数凹模式?然而,在一个陌生的领域寻找熟悉的数学概念并不是一件容易的事。事实上,这有点像寻找地外生命一你可能对生命有什么标志性特征有自己的想法,也有可以指引你搜索的线索,但你仍然很难预测新的生命形式会是什么样子。

  5 合作关系的发展近年来,许埈珥与俄亥俄州立大学的数学家卡茨和耶路撒冷希伯来大学的数学家卡里姆-阿迪普拉西托一起,合作完成了许多他最重要的工作。他们组成了一个不同寻常的三人组。

  阿迪普拉西托最初想成为一名厨师。在进入组合学(图论和罗塔猜想等问题所在的数学领域)之前,他在印度各地背包旅行。阿迪普拉西托高中时很喜欢数学,但后来放弃了,因为他觉得 “数学对我来说不够有创造性”。卡茨则对独立摇滚乐队有着狂烈的热爱和深入细致的了解,这些都是他早年作为大学电台DJ(音乐节目主持人)时培养的。三位合作者中,卡茨是最接近拥有典型数学血统的,他认为自己是在未来诗人和未来厨师的创造性想法之间做翻译。

  卡茨说:“卡里姆有一些不知道从何而来的惊人想法,而许埈珥对数学应该如何发展有着美好的愿景。通常很难把卡里姆的想法融入许埈珥的愿景中,也许我做的一部分事情就是和卡里姆聊天,把他的想法翻译成更接近数学的东西。”

  早在2011年,卡茨就开始关注许埈珥证明里德猜想的工作。那时,许埈珥对证明罗塔猜想还没有任何头绪。卡茨仔细阅读了许埈珥关于里德猜想的证明,他发现如果在论证中去掉特定的一步,他就可以用那篇论文的方法给出罗塔猜想在部分情形下的证明。于是他跟许埈珥联系,在短短几个月时间里,两人合写了一篇文章(发表于2012年),解释了一小类被称为“可实现的”拟阵的对数凹性。

  然而,那篇论文并没有解决罗塔猜想中最难的部分一一证明 “不可实现的” 拟阵的对数凹性,而拟阵大多数都是不可实现的。前文提到,20世纪50年代出现的霍奇理论最初被定义在 “代数簇的上同调环” 上。如果你想证明霍奇型结构解释了我们在拟阵中观察到的现象,你就需要找到一种方法来解释如何从拟阵中提取出类似于上同调环这样的对象。对于可实现的拟阵,有非常直接的方法能做到这一点,这也是为什么许埈珥和卡茨能很快证明可实现拟阵的罗塔猜想。但对于不可实现的拟阵,并没有明显的方法可以将上同调环实例化一它们就好比一种语言,这种语言中根本没有词语来表达这个概念。

  4年来,许埈珥和卡茨一直试图在不可实现拟阵的情形下定义霍奇结构,但失败了。在此期间,他们确定了霍奇理论的一个特殊方面--霍奇指标定理(Hodge index theorem)本身就足以解释对数凹性,但这里存在一个问题:他们无法证明霍奇指标定理对拟阵也成立。

  这时,阿迪普拉西托进入了我们的视野。2015年,他来到高等研究院访问许埈珥。阿迪普拉西托意识到,虽然只用霍奇指标定理就可以解释对数凹性,但要对拟阵证明霍奇指标定理,则要尝试证明(包括霍奇指标定理在内的)更多来自霍奇理论的想法——这三位合作者将其统称为 “克勒包”(K?hler package)。

  阿迪普拉西托说:“我告诉许埈珥和埃里克,事实上有一种纯组合的方法可以证明它。然后我们很快就想出了一个计划。我觉得是他们提出了问题,我提供了技术。”

  这一技术给出了罗塔猜想的完整证明。2015年11月,三人在网上发布了他们的工作。[3] 从那时起,这项工作就传遍了整个数学界。他们的工作为霍奇理论提供了一个完全来自组合学的视角;反过来,霍奇理论又为解决组合学中的未解问题提供了一种全新的方法。

  这项工作也提升了许埈珥的知名度。除了获得了高等研究院的新职位之外,他还经常被认为是菲尔兹奖的有力竞争者。这一奖项每4年颁发一次,授予40岁以下最有成就的数学家。

  6 分道扬镳早在2012年,刚刚证明了里德猜想的许埈珥就回到自己的母校首尔国立大学,报告了自己的工作。台下的听众中就有他的恩师广中平祐。广中平祐回忆说,当他得知奇点理论可以应用于图论时,他感到很惊讶。报告结束后,广中平祐问许埈珥,这项新工作是否标志着他研究兴趣的改变。

  “我记得我问过他,是否完全沉浸于图论之类的东西,而对奇点失去了兴趣。他说不,他仍然对奇点感兴趣。” 广中平祐说。

  许埈珥也记得那次谈话。事实上,当时他正迈向数学中一个全新的方向。他觉得或许自己只是没准备好大声说出来一尤其对那个改变了他命运的人。许埈珥说:“当时我正要离开这条道路。我想他意识到了这一点,但我还是离开了这条道路。也许是某种心理作用,让我不想承认自己完全舍弃了奇点理论。”

  从那以后,许埈珥和广中平祐再也没见过面。广中平祐今年87岁(广中平祐生于1931年,在本书英文版出版时(2018年)87岁。——编者注),业已退休,但他仍然致力于证明奇点理论中一个困扰了他几十年的问题(即前文提到的 “特征P的奇点消解” 问题。——译者注)。2017年3月,广中平佑在哈佛大学他曾经的个人主页上发布了一篇长文,宣称给出了一个证明。包括许埈珥在内的一些数学家已经初步审查了这一工作,但尚未验证该证明是否成立。广中平祐的身体状况已不再适合长途旅行,但他还是希望能再次看到自己的爱徒。“我只能从别人那里听到他的消息。” 广中平祐说。

  一天下午,我们在高等研究院校园内许埈珥的公寓里喝咖啡,我问他,他对没有从事广中平祐可能希望他从事的领域有何感想。他想了一会儿,说他很愧疚。

  他说:“和广中先生在一起的很多时候,我都不得不假装自己理解他的意思。由于缺乏数学背景,我无法和他一起进行严肃的研究。这给我留下了一份需要长期补习的功课。”

  与此同时,许埈珥认为,自己从数学启蒙到今天所走过的道路,对他的工作发展是有利的,或许还可以说是必要的步骤。我们在普林斯顿的一个街角分别时,他说:“我需要思考的空间。” 然后,他就遁入了高等研究院安静的氛围。许埈珥找到了自己进入数学的路,现在他在路上了,他将通过它找到自己的路。

  本文来源:知识分子,原文标题:《辍学写诗的数学差生,刚刚获得菲尔兹奖》

 4 ) 你有过想要去熟悉一门学科的冲动么?

先评价电影,一般。总体上没什么硬伤,无论是题材、戏剧结构、演员演技和拍摄都是中规中矩的。最大的问题是,太常规了,太典型的学渣偶遇高人卧薪尝胆克服困难揭穿小人最后华丽逆袭的剧本了,属于影片看了前1/3就完全能猜到后面剧情的那种。影片对于东亚这种畸形的教育观念、高考制度,以及脱北者、亲子关系等严肃话题的探讨也是浅尝辄止,就连温情部分都拍得及其无聊。所以只能说,不难看,但看着不过瘾。

但是,之所以还是想要专门写一篇影评,是电影前半段有一处情节非常的触动我。就是当那位数学家解释说,为什么黎曼要用最笨的办法一步一步去手算根号2的值——“因为他想要熟悉它,他想要熟悉数学。如果只是单纯靠背公式去解题,就永远无法与它变熟。”

我看到这个回答时,感觉心里突然被什么东西点了一下。我们每个孩子从小到大都被家长、被老师、被社会敦促着去学习,仅仅是因为我们需要学习这些知识去考个好学校、找个好工作、做一个对社会有用的人。但我们却很少能产生这种本该是学习的原动力的想法,就是——我想要去了解这个知识,我想要去熟悉这个知识,我想要跟它变熟!我们有发自内心的觉得某一个知识点很奇妙么?有觉得某一个学科很有意思我迫切想要去了解它么?也许有过,甚至可能大部分孩子都有过,但一旦这些知识被纳入到考试大纲里,有了一个符合“出题人意图”的标准答案,它瞬间就失去了魅力,取而代之的是它变成了枷锁、镣铐,变成决定你升学命运的鬼画符。于是我就不想跟它变熟,我只想要一个公式,一个现成的解题思路,好让我在2个小时内把这些题尽快解出来。

试想,如果现在有一个孩子,他/她在拿到一道数学题时,不去套公式,而是用笨办法一步步手算出来,一道题就用了2个小时,他/她会得到长辈的夸奖么?肯定不会啊,他可能反而被一通责骂,责骂他怎么不去动脑筋学技巧找简便算法,这样到了考场上怎么办啊?唉,考试,本该是检验学习成果的一种手段,却成为了学习的目的。

我想起我之前的一个同事,曾想让我帮她家孩子补一补英语,当时我问:“你想让他补英语,是想要让他真正学会怎么去用英语么?还是想提高考试成绩?” 她很诚实得回答我:“提高考试成绩。” 后来我没答应,不是我不想挣这份钱,虽然我的英语能力完全够教一个小学生,但是我离开学校太久,实现是不再理解现在的考试中“出题人的意图”了,而如果只是为了考试,最重要的当然是“出题人的意图”,而英语本身,反而是最不重要的。

呜呼哀哉,只希望等未来AI普及了之后,这些理智的大人们终于能意识到,要论背公式、找规律、算概论,一个人再怎么卷,都不可能超过算法,你期望你孩子能坐进的那间大厂格子间里,已经摆满了一台台超级计算机,没有了属于人的位置。也许到了那个时候,大人们才能把学习最本质的意义,还给莘莘学子们吧~

 5 ) 指斥行将就木的大韩民国

最近韩国影帝崔岷植主演的《奇怪国家的数学家》票房口碑双双高歌猛进。

影片通过暗流涌动日常生活,将大韩民国乃至朝鲜半岛行将就木的未来描绘得淋漓尽致。

故事发生在大韩民国的一所顶尖高中,逃北的天才数学家为逃避现实躲在学校中甘当看门大爷,贫苦出身的男孩凭借自己努力考入名校后挣扎求存。学校老师为了讨好财阀子女,在决定命运的数学考试中徇私舞弊,两韩间谍为了争夺并逼迫数学家进行武器研究怪招频出。

波澜不惊的校园生活中隐藏着不耻的真相,跌宕起伏的天才人生中揭露着阴郁的现实。

影片中将南北韩“人才培养”与“学术研究”进行类比,显然把大韩民国批的体无完肤。

在人才培养方面,至少北韩天才数学家还是脱颖而出了。而南韩则因为社会群体的不同,普通人家优秀学生的才华险些被抹杀,成为了老师为达到自己利益铺路的垫脚石。

在学术研究方面,南北韩则惊人的一直,为了国家政治、军事霸权的需要,不择手段的逼迫天才数学家从事“为战争、为宣传的研究”,而导致数学家不仅家破人亡,更一度丧失了人生唯一的追求——数学。

“上有所好,下必甚之”。 试想作为一个国家,人才培养、科研目的如此追求功利; 必将造成整个社会、全体国民意识中也唯个人利益之上,随后造假、违规愈演愈烈; 最终没有真正的人才、没有真正的研究、没有真正的成果。 更不可能有发展,有未来;有的只会是不断腐朽、衰亡。 奇怪的国家,奇怪的朝鲜半岛。

一个功利、虚伪、短视的国家,圈养着一个功利、虚伪、短视的民族; 而后这一民族中的“佼佼者”继续领导着这样的国家继续前行; 恶性循环不断的继续,不打破就唯有步入毁灭。

影帝崔岷植饰演的逃北数学家在第一次授课时的话“对解决的问题视而不见,错误的问题中得不到正确的答案”,震撼到了我。

“解决问题,先搞清问题”影片看似和以往的韩国电影相同,在起底“大韩民国”的社会问题和北南关系。实则指出,当下的大韩民国,无论芸芸大众、还是财阀精英、乃至国家机器,都还没搞清问题所在,就盲目的“找正确答案”。简直就是可笑、可悲、可耻到无以复加。

同时也在批判、自嘲韩国影视,其对社会问题的解读,解决。不断提问,却无结果也是因为社会各界的功利性、对问题与解决的盲目性。

 6 ) 人改造环境,环境影响人……

就算拍的是温情励志片也要和政治挂钩,这是棒国常有的设定,尤其是脱北者的称谓,各类电影中早已重复多次,本人对于这点很是不快,如果非要靠着挖讽来抬高自己,所表达的荣誉又包含多少纯粹?专注自家不好吗,还是编剧不沾点丑化难以下笔…… 抱歉有点失态,其实此片也有自嘲的成分,比如垃圾老师的狗屁逻辑、社会关怀对象、另个学者的冷漠自私等,这些已经足够反映问题了,为何标题还要用奇怪二字形容CX,我看那所国家前1%优秀学生聚集的校园更是迷惑…… 回到教育这个话题上来,故事就舒服多了,单身家庭下的贫困少年韩智宇,虽相貌平平,成绩垫底,却温柔善良、懂事体贴,因为一次转学危机碰巧遇见了隐居于民间的数学大师李克成,两人在接触的过程中互相成长、彼此治愈…… 这两位男主我都很喜欢,皆因表演上的自然而不做作,作为老实人的心疼又或杰出者的遗憾,都牵动着心扉。而且,在现实中我的数学成绩也很不好,所以看到某些对话真的受益匪浅,下面摘选一些给大家: 执着于固定模式,就无法看清下一步。 不相信未证明的事。 重要的不是计算,而是思考。 比起答题,寻找答案的过程更重要。 一心只想答对,其它什么也看不到。 理解题目更重要。 自我怜悯可是坏毛病,就算幸福来临,也只顾着钻研不幸,因为那很轻松。 想跟数学变熟,要不断接触,变得亲近后才能理解,理解的话,才有可能爱上它,而不是单靠背诵公式。 平静、毅力,有勇气继续的人,才能精通数学。 …… 是啊,当优秀被成绩定义,人类的一切美好都将不复存在,谁又在乎殿堂里包含着多少水分? 感谢青春题材、草莓牛奶、巴赫音乐以及圆周率弹奏,让我看到了一条如此治愈的证明之路。 另外再吐槽两点,那个所谓的毕达哥拉斯杯,无视奥林匹克和诺贝尔,有点装逼过头了。还有女主倒是自得其乐,意气用事,酱油都洒到别人身上了,也没有自己动手擦干净。 最后,希望大家都能遇到贵人,点石化金。

 短评

剧情:闻香识女人+骄阳似我人物关系: 失去儿子的父亲和失去父亲的儿子崔岷植跟巴赫的组合真有趣。

6分钟前
  • 马克西米利安
  • 还行

最痛莫过于有一个金粉儿子。

11分钟前
  • 大妇女
  • 力荐

“虽然答对问题很重要但更重要的是知道问题是什么因为不可能从错误的问题中得到正确的答案”# 下辈子_投胎_要做数学天才

12分钟前
  • əqɒuuɒm
  • 推荐

看到一半就失去兴趣,实在没能看得下去,导演功力问题,拍得太零碎了又充满套路。不过有两句台词说的实在不错,自己最近确实相同的感触,记录一下:“你爸爸的死不是什么荣誉勋章。自怜是一种可怕的疾病,即使你感到快乐,你也会沉迷于悲剧” “找到答案很重要,但知道问题是什么更重要。你不能从错误的问题中得到正确的答案”

16分钟前
  • 水脉
  • 较差

“你和我,只要找到各自的出路就行了。”

17分钟前
  • 影树
  • 推荐

韩国网文《保安生活从证明黎曼猜想开始》

18分钟前
  • 徐徐连连发财
  • 推荐

故事结构能联想到闻香识女人,长者以万钧之势托举年青,也从中获取救赎。任何学科的尽头都是哲学,设计这种学术元素的电影给普通人看时,哲学式的对白会很好用。另外这两年我隐隐觉得韩国影视好像很喜欢给角色戴高帽子,为提振国民自信,主角动不动就自带某种世界级角逐的天赋,现实中的各项大奖仿佛也予取予求,毫不在乎可信性。

19分钟前
  • XY㍿
  • 推荐

导演编剧引入这位外来者显然是要批评反思韩国当前的应试教育,崔岷植饰演的数学家在黑板上书写公式,用圆周率演奏钢琴的那种表情状态太让人羡慕了。反而南韩的老师却在教育小孩去揣摩出题人的想法,一味去追求「正确答案」。

23分钟前
  • einverne
  • 推荐

奇诡片名吸引了我,虚构了一个脱北的天才数学家故事,剧作上老套的缺点挺多,但是试图诗意地、视听化地讲述数学之道理的探索还是蛮有意思的,韩国老戏骨崔岷植的精彩表演也值得一看。

26分钟前
  • 谢飞导演
  • 还行

剧情太烂,数学家没有共情点,男主的落魄,曲折学业经历不丰满,数学的玄幻之处没有表达,影片名字有骂人嫌疑,老崔只是卖点

29分钟前
  • 康丁丁
  • 还行

如果你看过玄幻修仙网文,这几乎是一样的套路。难得的是,这是一个平铺直叙的故事,我们看到的是一老一少之间的情谊,看到的是对社会现象的批评,以及远胜一切地对于理想的追求。青春成长电影,不励志,不煽情。

34分钟前
  • 安亦alone
  • 还行

简单,齐整。中段感觉走向了卖萌韩剧,节奏,表演,就是女学生参与剧情的部分。轻松有时让人感到轻易,削减了两个主要人物身上的背负。当后段危机转机一并出现时,虚假的感觉总会跳出来。关于脱北者,死掉的儿子,贵族学校作弊,学术界沽名钓誉,数学家被自由绑架等等,很多情节在接受度上让人隔了一层,质疑是否真的成立。不太赞赏导演对基调和表演的把握。印象最深刻的是,贵族学校的导师们一面喝着咖啡一面吐槽,本阶级的学生们性格很好容易相处,而男主那样破格录取的优秀贫困生敏感,性格不好,担心说了什么就刺痛到他们,还是离开比较好。这段话是这个片里感受最真实的一段了,坦白说老师们说得没错,但不能接受。

39分钟前
  • 想是多
  • 还行

有点闻香意味

43分钟前
  • обломов
  • 还行

3.5,整部影片就像数学公式一样,情节展开及求证过程,结果都很一目了然,但仍是美丽的,就像数学一样,其它任何学问都是如此。

46分钟前
  • 冰拿铁
  • 还行

虽然套路,但有些部分还是不错的

48分钟前
  • 桃桃林林
  • 还行

崔岷植叔叔啊,二十年前您可以选这种剧本。现在了,睁开您的大眼吧!!

50分钟前
  • peipakoa
  • 较差

起点高却四平八稳,豪华的阵容撑不起流水的套路。但好在:1数学和音乐在一起总能引发舒适;2巴赫是音乐的起点和终点;3有种「一日为师终身为父」的小美好,片尾曲弦乐+键盘重新演绎的一曲巴赫无伴奏大提琴01就像老师和学生在对话。

54分钟前
  • WIKI魏
  • 还行

摘录电影里面受到启发的几句话:①虽然找出答案很重要,但理解题目更重要,因为在错误的题目中,是得不到正确答案的。② 比起答题,更重要的是寻找答案的过程。③要不断接触,变得亲近后才能理解,理解的话,才有可能爱上它。④重要的不是计算,而是思考。⑤算不出答案时,比起生气或放弃,“哇,题目真难啊”,“我看要明早再来算了”,要这么从容才行。

55分钟前
  • 牛奶泡玉米好吃
  • 力荐

这次啃生肉的感觉还不错。对于数学的坚持,究竟是什么?问题摆在这里,会有不同的回答。可是,谁能遇到像李教授这样的人呢?那么通俗的讲解数学。所以,注定大多数人不会成为지우,而数学只能是一门枯燥难懂的学科。지우深夜学习的过程,想起了悟空学艺。最后在礼堂,李教授从口袋里拿出笔,眼前出现的是《特工》里李明云向朴皙映晃动的劳力士,忍不住想笑。因为崔岷植加一星。

60分钟前
  • Hangain
  • 推荐

标准流程的拍法,生出不尽然相同的感动。又稳又准确,但在情感上还是网开一面了,温暖重重。

1小时前
  • 华盛顿樱桃树
  • 推荐